The Crystal Structure of 2-Acetyl-3,6-dihydroxy-3,7-dimethyl-6-phenyl-12-azatricyclo[7,2,1, $0^{5,12}$ dodecane Methiodide

By Anne-Marie Pilotti
Institute of Inorganic and Physical Chemistry, University of Stockholm, Stockholm, Sweden

(Received 2 June 1970)

Abstract

The crystal structure of 2-acetyl-3,6-dihydroxy-3,7-dimethyl-6-phenyl-12-azatricyclo[7,2,1, $0^{5,12}$]dodecane methiodide, $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{INO}_{3}$, has been determined using three-dimensional X-ray diffraction data. The compound crystallizes in the monoclinic space group $P 2_{1}$, with cell dimensions $a=15 \cdot 307, b=9 \cdot 198$, $c=7.842 \AA$ and $\beta=97.57^{\circ}$. There are two molecules in the unit cell. The structure has been refined by the full-matrix least-squares technique to an R value of 0.044 . The two six-membered rings A and B in the tricyclic system are chair-shaped and the five-membered ring C has an envelope conformation. The A / B and A / C ring junctions are both cis but the B / C ring junction is trans.

Introduction

An investigation of crepidine, $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{3}$, was started to obtain a better insight into the chemical constitution of various alkaloids isolated from Dendrobium crepidatum Lindl. (Leander, 1969). From this orchid five alkaloids have been isolated and crystallized. On the basis of spectroscopic analyses these compounds appear to be closely related. Such studies revealed some of the functional groups but not the molecular skeletons. Therefore, an X-ray analysis of crepidine methiodide, $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{INO}_{3}$, was undertaken to establish its chemical structure and stereochemistry.

Experimental

Crystals suitable for X-ray analysis were kindly supplied by K. Leander (Institute of Organic Chemistry, University of Stockholm, Stockholm, Sweden).

Preliminary Weissenberg and rotation photographs indicated monoclinic symmetry. The space group is uniquely determined as $P 2_{1}$ since the compound is optically active and systematic absences occur for $0 k 0$ with k odd.

Two crystals, measuring 0.266 (in the direction of \mathbf{b}) $\times 0.058$ (c) $\times 0.014$ (a) mm and 0.206 (b) $\times 0.075$ (c) $\times 0.014$ (a) mm respectively, were used in the collection of three-dimensional X-ray diffraction data. The intensities of 1550 unique reflexions with $\sin \theta / \lambda<0.45$ were measured by the $\theta-2 \theta$ scanning technique with a Siemens automatic diffractometer using Ni-filtered $\mathrm{Cu} K$ radiation. Each reflexion was measured twice, and stationary background measurements were made at both ends of the scan range of $1 \cdot 2^{\circ}$. The crystals were oriented with the b-axis coincident with the φ axis. They were not stable to X-rays so test reflexions were therefore, measured periodically.

After a decay in intensity of about 15%, the crystal was exchanged for a fresh one. 1289 observed independent reflexions were used in the structure determina-
tion. Lorentz-polarization and absorption corrections ($\mu=120.5 \mathrm{~cm}^{-1}$) were applied to the net intensity counts.

Crystal data

Lattice constants

$$
\begin{aligned}
& a=15 \cdot 307 \pm 5, b=9 \cdot 198 \pm 2 \\
& c=7 \cdot 842 \pm 5 \AA ; \beta=97 \cdot 57 \pm 5^{\circ}
\end{aligned}
$$

Cell volume
Density (X-ray) $\quad 1.471 \mathrm{~g} . \mathrm{cm}^{-3}$
Molecules per unit cell
Space group $\quad P 2_{1}$

Structure determination and refinement

The structure was determined from Patterson and successive Fourier syntheses by the heavy-atom method. The x and z coordinates of the iodide ion were deduced from a three-dimensional Patterson synthesis. An arbitrary value of $\frac{1}{4}$ was assigned to the y coordinate, since there is no unique origin position along the b axis for the space group $P 2_{1}$. The iodide ion position was refined by least-squares treatment until the R index $0 \cdot 20$ ($R=\sum| | K F_{o}\left|-\left|F_{c}\right|\right| / \sum\left|K F_{o}\right|$) was obtained.

The first Fourier synthesis was calculated with the structure amplitudes phased by the contributions of the iodide ions alone. There were as expected falsesymmetry planes through the iodide peaks. Because of this, 50 peaks corresponding to 25 atoms were observed in the maps. It was found in a later stage of the structure analysis that two missing atoms were not resolved due to coincidental overlap of peaks from the two images. Since the molecular skeleton of the compound was unknown it was difficult to pick out the entire molecule from the double-image Fourier synthesis. Nuclear magnetic resonance data (Leander, 1969)indicated, however, that the molecule should contain a monosubstituted phenyl ring. A probable position for this group was found from the electron-density maps. Further atoms which had a high probability of belonging to the same molecular set were found from considerations of
reasonable bond lengths and angles. In an attempt to locate the other atoms in the molecule, the relative heights of corresponding peaks in the Fourier syntheses were compared in order to select the correct member of each pair. The Fourier process was repeated several times, but the structure determination did not converge to a single molecule. The analysis was complicated by the fact that many of the light-atom peaks lay near the false mirror plane and their contribution to the phasing model reinforced rather than suppressed the false symmetry.

At this stage different structure alternatives had to be considered and models of the corresponding structures were built. Several steps of least-squares refinement followed by Fourier summation were calculated for the possible structure alternatives before the true structure was revealed. Spectroscopic and chemical evidence as well as differences in scattering power were used to differentiate between C, N and O atoms.

The atomic parameters were refined by the full-matrix least-squares method (Gantzel, Sparks \& Trueblood, 1966) using isotropic temperature factors for the light non-hydrogen atoms and an anisotropic temperature factor for the iodide ion. The scattering factor curves used for oxygen, carbon and nitrogen were those given by Freeman (1959) and for the iodide ion that given by Cromer \& Waber (1965). The scattering factors were corrected for the real part of the anomalous dispersion coefficient. 1289 reflexions were used in the refinement and Hughes's (1941) weighting procedure with $F_{o \text { min }}=1.56$ was applied. The R-value converged to 0.047 . No extinction effects were observed and thus no correction for extinction was applied.

Up to this stage $f_{j}^{\prime \prime}$, the imaginary part of the anomalous dispersion factor for the iodide ion, was ignored. To decide upon the absolute configuration of the molecule, two sets of structure factors were calculated, one with $f_{j}^{\prime \prime}=6.68$ (Cromer, 1965) and another with $f_{j}^{\prime \prime}=$ $-6 \cdot 68$. The calculation with $f_{j}^{\prime \prime}=6 \cdot 68$ gave an R value of 0.044 after two cycles of full-matrix least-squares refinement whereas the calculation with $f_{j}^{\prime \prime}=-6.68$ gave an R value of 0.054 . According to the statistical theory discussed by Hamilton (1965), the configuration which has been assumed above should have a very high probability of being the real and absolute configuration ($c f$. Fig. 1). But for a statistical test to be relevant one must assume that there are no systematic errors present in the data which would favour one hypothesis over the other. As described above the crystals are not stable to X-rays. Furthermore, the intensities were not collected in a random sequence, but rather one layer after another. This could cause systematic errors and therefore the conclusion about the absolute configuration may not have the high significance indicated in the test. Comparison of observed and calculated intensities $I(h k l)$ and $I(\bar{h} \bar{k} \bar{l})$ would of course be valuable in deciding the absolute configuration. Because of the relatively small variation produced by anomalous dispersion, however, accurate intensity measurements are
required. Since, as stated above, the crystals are damaged by X-rays and because no full-circle crystal orienter was available for measuring the Friedel pair reflexions directly after one another, this test was not performed.
The refinement was terminated when the shifts for all parameters but one where less than one tenth of the estimated standard deviations. The shift of the y parameter for the atom lying nearest to the false mirror plane was about twenty per cent of the corresponding standard deviation. The final difference synthesis yielded no thoroughly convincing H atom sites. They were therefore omitted from the calculation. Observed and calculated structure factors are given in Table 1.

Description and discussion of the structure

In the following discussion, atoms belonging to different asymmetric units are labelled as follows:
Super-
script
Coordinates $\begin{aligned} & \text { Super- } \\ & \text { script }\end{aligned}$
Coordinates

(a)

(b)

Fig. 1. Perspective views of the 2-acetyl-3,6-dihydroxy-6-phenyl-3,7,12-trimethyl-12-azatricyclo[7,2,1,05,12]dodecane ion. (b) is rotated 30° from (a).

Table 1. Observed and calculated structure factors

3: 10

The bond lengths and bond angles, uncorrected for thermal motion, were computed from the refined coordinates given in Table 2 and are listed in Tables 3 and 4 (see Fig. 2).

Table 2. Atomic parameters with their standard deviations

	- x	y	z	B
I	$0 \cdot 1922$ (1)	$0 \cdot 2500$	$0 \cdot 1705$ (1)	
C (1)	0.8903 (9)	$0 \cdot 4201$ (18)	$0 \cdot 2534$ (18)	$4 \cdot 0$ (3)
C(2)	$0 \cdot 8382$ (9)	$0 \cdot 5510$ (14)	$0 \cdot 2708$ (16)	$3 \cdot 2$ (3)
C(3)	0.7493 (7)	0.5186 (12)	$0 \cdot 3427$ (14)	$2 \cdot 5$ (2)
C(4)	0.7008 (8)	0.4059 (15)	$0 \cdot 2193$ (16)	$3 \cdot 2$ (3)
C(5)	0.7487 (7)	$0 \cdot 2606$ (26)	$0 \cdot 2034$ (14)	$4 \cdot 0$ (2)
C(6)	$0 \cdot 6931$ (8)	$0 \cdot 1602$ (14)	0.0753 (16)	$3 \cdot 4$ (3)
C(7)	$0 \cdot 6915$ (9)	$0 \cdot 2056$ (15)	-0.1170 (18)	$4 \cdot 0$ (3)
C(8)	0.7893 (9)	0.2277 (19)	-0.1540 (17)	4.5 (3)
C(9)	0.8332 (8)	0.3391 (16)	-0.0373 (16)	3.8 (3)
$\mathrm{C}(10)$	$0 \cdot 9280$ (10)	0.3808 (18)	-0.0549 (18)	$4 \cdot 5$ (3)
C(11)	0.9599 (12)	$0 \cdot 4480$ (21)	$0 \cdot 1298$ (22)	$5 \cdot 7$ (4)
$\mathrm{N}(12)$	0.8395 (6)	$0 \cdot 2925$ (11)	$0 \cdot 1502$ (12)	$3 \cdot 5$ (2)
$\mathrm{C}(13)$	0.8983 (11)	0.6529 (19)	$0 \cdot 3885$ (22)	$4 \cdot 2$ (3)
$\mathrm{O}(14)$	0.9517 (8)	0.6032 (15)	0.4997 (16)	$6 \cdot 3$ (3)
C(15)	0.8888 (10)	0.8134 (19)	$0 \cdot 3672$ (21)	$4 \cdot 4$ (4)
$\mathrm{O}(16)$	0.7646 (6)	0.4517 (11)	$0 \cdot 5061$ (11)	3.9 (2)
C(17)	0.6942 (10)	0.6518 (18)	$0 \cdot 3491$ (20)	$4 \cdot 4$ (3)
$\mathrm{O}(18)$	0.7397 (6)	0.0226 (11)	$0 \cdot 1015$ (12)	$4 \cdot 2$ (2)
C(19)	0.6022 (10)	$0 \cdot 1364$ (17)	$0 \cdot 1325$ (19)	$4 \cdot 0$ (3)
C(20)	0.5933 (11)	0.0413 (21)	$0 \cdot 2546$ (22)	$5 \cdot 4$ (4)
C(21)	$0 \cdot 5080$ (15)	0.0254 (27)	$0 \cdot 3169$ (28)	$7 \cdot 1$ (5)
C(22)	0.4393 (14)	$0 \cdot 1037$ (24)	$0 \cdot 2387$ (26)	6.6 (4)
C(23)	0.4457 (13)	$0 \cdot 2074$ (22)	$0 \cdot 1124$ (27)	$6 \cdot 8$ (5)
C(24)	0.5326 (10)	$0 \cdot 2214$ (18)	0.0545 (20)	$5 \cdot 0$ (4)
C(25)	0.6414 (11)	$0 \cdot 1073$ (19)	-0.2430 (21)	$5 \cdot 3$ (4)
C(26)	$0 \cdot 8958$ (9)	$0 \cdot 1582$ (17)	$0 \cdot 1848$ (19)	3.9 (3)

For I the anisotropic temperature factor T obtained was $T=$ $\exp \left[-\left(0.0053 h^{2}+0.0114 k^{2}+0.0148 l^{2}-0.0011 h k+0.0024 h l+\right.\right.$ $0.0025 \mathrm{kl})$].

Table 3. Bond distances with standard deviations

$\mathrm{C}(1)-\mathrm{C}(2)$	$1.46(2) \AA$	$\mathrm{C}(13)-\mathrm{O}(14)$ $\mathrm{C}(2)-\mathrm{C}(3)$	$1.57(2)$

Table 3 (cont.)

Fig. 2. Interatomic distances (in \AA) in the 2 -acetyl-3,6-dihy-droxy-6-phenyl-3,7,12-trimethyl-12-azatricyclo [7,2,1,05,12]dodecane ion.

Table 4. Interatomic angles with standard deviations

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$112 \cdot 8(1 \cdot 1)^{\circ}$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$105 \cdot 7(0 \cdot 9)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$116 \cdot 1(1 \cdot 0)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$110 \cdot 3(1 \cdot 0)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$114 \cdot 0(1 \cdot 1)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$108 \cdot 6(1 \cdot 1)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$110 \cdot 0(1 \cdot 1)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$118 \cdot 7(1 \cdot 2)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$101 \cdot 4(1 \cdot 1)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(1)$	$110 \cdot 5(1 \cdot 3)$
$\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(2)$	$110 \cdot 5(1 \cdot 3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(12)$	$115 \cdot 1(1.1)$
$\mathrm{C}(1)-\mathrm{N}(12)-\mathrm{C}(5)$	$114 \cdot 1(1 \cdot 1)$
$\mathrm{N}(12)-\mathrm{C}(5)-\mathrm{C}(4)$	$108 \cdot 4(1 \cdot 5)$
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(12)$	$112 \cdot 4(1 \cdot 0)$
$\mathrm{C}(5)-\mathrm{N}(12)-\mathrm{C}(9)$	$111 \cdot 9(0.9)$
$\mathrm{N}(12)-\mathrm{C}(9)-\mathrm{C}(8)$	$111 \cdot 6(1 \cdot 1)$
$\mathrm{N}(12)-\mathrm{C}(9)-\mathrm{C}(10)$	$102 \cdot 6(1 \cdot 0)$
$\mathrm{C}(9)-\mathrm{N}(12)-\mathrm{C}(1)$	$104 \cdot 5(1 \cdot 0)$
$\mathrm{N}(12)-\mathrm{C}(1)-\mathrm{C}(11)$	$97 \cdot 8(1 \cdot 1)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(13)$	$105 \cdot 6(1 \cdot 2)$
$\mathrm{C}(2)-\mathrm{C}(13)-\mathrm{O}(14)$	$120 \cdot 0(1 \cdot 5)$
$\mathrm{C}(2)-\mathrm{C}(13)-\mathrm{C}(15)$	$119 \cdot 7(1 \cdot 4)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(15)$	$120 \cdot 3(1 \cdot 6)$

$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(13)$	$112 \cdot 4(1 \cdot 1)^{\circ}$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(16)$	$111 \cdot 1(0 \cdot 9)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(17)$	$112 \cdot 1(1 \cdot 0)$
$\mathrm{O}(16)-\mathrm{C}(3)-\mathrm{C}(17)$	$110 \cdot 8(1 \cdot 0)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(16)$	$106 \cdot 6(0 \cdot 9)$
$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(17)$	$110 \cdot 3(1 \cdot 0)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(18)$	$102 \cdot 2(1 \cdot 1)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(19)$	$109 \cdot 9(1 \cdot 1)$
$\mathrm{C}(18)-\mathrm{C}(6)-\mathrm{C}(19)$	$106 \cdot 4(1 \cdot 1)$
$\mathrm{C}(6)-\mathrm{C}(19)-\mathrm{C}(20)$	$119 \cdot 5(1 \cdot 4)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$119 \cdot 5(1 \cdot 7)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$118 \cdot 1(2 \cdot 0)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$124 \cdot 4(2 \cdot 0)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$115 \cdot 7(1 \cdot 7)$
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(19)$	$119 \cdot 1(1 \cdot 5)$
$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{C}(20)$	$123 \cdot 0(1 \cdot 5)$
$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{C}(6)$	$117 \cdot 5(1 \cdot 3)$
$\mathrm{C}(9)-\mathrm{C}(6)-\mathrm{C}(7)$	$115 \cdot 0(1 \cdot 1)$
$\mathrm{C}(18)-\mathrm{C}(6)-\mathrm{C}(7)$	$108 \cdot 3(1 \cdot 0)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(25)$	$114 \cdot 9(1 \cdot 2)$
$\mathrm{C}(25)-\mathrm{C}(7)-\mathrm{C}(8)$	$112 \cdot 3(1 \cdot 2)$
$\mathrm{C}(1)-\mathrm{N}(12)-\mathrm{C}(26)$	$106 \cdot 7(1 \cdot 0)$
$\mathrm{C}(5)-\mathrm{N}(12)-\mathrm{C}(26)$	$108 \cdot 1(1 \cdot 2)$
$\mathrm{C}(9)-\mathrm{N}(12)-\mathrm{C}(26)$	$111 \cdot 5(1 \cdot 0)$

The deviations from normal values for carbon-carbon bonds of the type $s p^{3}-s p^{3}, 1 \cdot 53 \AA$, and for aromatic carbon-carbon bonds, $1.395 \AA$, are in accordance with the standard deviations calculated for the bond lengths in the molecule. The relatively large standard deviations may be explained by the presence of the iodide ion with its predominant scattering power and the fact that the crystals are not stable to X-rays.

The values of $1.49 \AA$ for the $\mathrm{C}(13)-\mathrm{C}(15)$ bond and $1 \cdot 20 \AA$ for the $\mathrm{C}(13)-\mathrm{O}(14)$ double bond are in agreement with the generally assumed values of $1.50 \AA$ for $\mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{3}\right)$ bonds (Lide, 1962) and $1 \cdot 23 \AA$ for car-bon-carbonyl oxygen double bonds (International Tables for X-ray Crystallography, 1962). Furthermore the carbon-oxygen single bond distances, 1.41 and $1.45 \AA$, are in accordance with the value $1.43 \AA$ for such bonds (International Tables for X-ray Crystallography, 1962).

The $\mathrm{C}\left(s p^{3}\right)-\mathrm{N}^{+}$bond lengths in this structure are not significantly different from the average value, 1.52 \AA, deduced from a survey of alkaloids by Hamilton, Hamor, Robertson \& Sim (1962). The iodide ion coordination is given in Table 5. All distances less than $3 \cdot 8 \AA$ between the cations are listed in Table 6. The distance between the iodide ion and the oxygen atom $\mathrm{O}\left(18^{i}\right)$ is $3.54 \AA$ indicating a hydrogen bond $\mathrm{O}-\mathrm{H} \cdots \mathrm{I}^{-}$. This is in agreement with the average value $3.53 \AA$, reported by Clark (1962) for such bonds. No other hydrogen atoms available for normal hydrogen bondings have been found in the structure.

Table 5. Distances to the iodide ion shorter than $4.0 \AA$

$\mathrm{I} \cdots \mathrm{C}(22)$	$3.98 \AA$	$\mathrm{I} \cdots \mathrm{O}(16 \mathrm{ii)}$	$3.73 \AA$
$\mathrm{I} \cdots \mathrm{C}(23)$	3.99	$\mathrm{I} \cdots \mathrm{C}\left(2^{\mathrm{vi}}\right)$	3.89

Table 5 (cont.)

$\mathrm{I} \cdots \mathrm{O}\left(18^{\text {i }}\right)$	3.54	$\mathrm{I} \cdots \mathrm{C}\left(9^{\text {vi }}\right)$	3.93
$\mathrm{I} \cdots \mathrm{C}\left(13^{\text {ii }}\right)$	3.99	$\mathrm{I} \cdots \mathrm{C}\left(10^{\text {vi }}\right)$	3.91
$\mathrm{I} \cdots \mathrm{O}\left(14^{\text {ii }}\right)$	3.85	$\mathrm{I} \cdots \mathrm{C}\left(11^{\text {vii }}\right)$	3.97

Table 6. Intermolecular distances shorter than $3.8 \AA$ between the cations

$\mathrm{O}(16) \cdots \mathrm{C}\left(8^{\mathrm{tii}}\right)$	$3 \cdot 35 \AA$	$\mathrm{O}(14) \cdots \mathrm{C}\left(15^{\mathrm{iv}}\right)$	$3 \cdot 67 \AA$
$\mathrm{O}(16) \cdots \mathrm{C}\left(9^{\text {iii }}\right)$	$3 \cdot 74$	$\mathrm{C}(15) \cdots \mathrm{O}\left(18^{\mathrm{v}}\right)$	$3 \cdot 46$
$\mathrm{C}(26) \cdots \mathrm{O}\left(14^{\mathrm{iv}}\right)$	$3 \cdot 21$	$\mathrm{C}(15) \cdots \mathrm{C}\left(26^{\mathrm{v}}\right)$	$3 \cdot 49$

The intermolecular packing arrangement viewed down the b axis is shown in Fig. 3. The ions are held together by a three-dimensional network of electrostatic forces. Perspective views of the molecule are shown in Fig. 1 (a) and (b). Rings A and B as well as A and C are cis-fused, but rings B and C are trans-fused (see Fig. 2). Least-squares planes have been calculated for these rings. The equations and deviations of atoms from the planes are given in Table 7. As is the case with most saturated five-membered rings, four atoms are coplanar in ring C and one is significantly out of the plane. Rings A and B are chair-shaped. Interplanar angles are also given in Table 7.

Table 7. Least-squares planes and deviations
The planes are described in terms of axes (m, n, p) having $m \| a^{*}$, $n \| b$ and $p \| c$.

Fig. 3. The structure projected along the b axis. \otimes nitrogen, oxygen, \mathcal{C} carbon. The large open circles denote iodide ions.

Table 7 (cont.)

	Plane A
	Deviation
$\mathrm{C}(1)$	$-0.009 \AA$
$\mathrm{C}(2)$	0.10
$\mathrm{C}(3) \dagger$	0.726
$\mathrm{C}(4)$	-0.009
$\mathrm{C}(5)$	0.009
$\mathrm{~N}(12) \dagger$	-0.564

Plane C

	Deviation
$\mathrm{C}(1)$	$-0.036 \AA$
$\mathrm{C}(9)$	0.035
$\mathrm{C}(10)$	-0.054
$\mathrm{C}(11)$	0.055
$\mathrm{~N}(12) \dagger$	-0.691

Plane B Deviation

	Deviation
$\mathrm{C}(5)$	$-0.031 \AA$
$\mathrm{C}(6) \dagger$	-0.601
$\mathrm{C}(7)$	0.031
$\mathrm{C}(8)$	-0.032
$\mathrm{C}(9) \dagger$	0.684
$\mathrm{~N}(12)$	0.033

Plane D Deviation $0.000 \AA$
-0.009 $\begin{array}{lr}\mathrm{C}(19) & 0.000 \\ \mathrm{C}(20) & -0.009 \\ \mathrm{C}(2) & 0.021\end{array}$

$\mathrm{C}(21)$	0.021
$\mathrm{C}(22)$	-0.024
$\mathrm{C}(23)$	0.014
$\mathrm{C}(24)$	-0.002

\dagger These atoms are not included in the least-squares planes. Angles between planes: $A \wedge B 72 \cdot 3^{\circ} A \wedge C 69 \cdot 0^{\circ} B \wedge C 8.6^{\circ}$

Computer programs used for the calculations

Program name and function. Computer $S I P$, Generation of steering paper tape for SIEMENS AED. IBM 360/75.
$A B S$, Calculation of ab-sorption-, extinction- and Lp-factors. IBM 1800. $D R F$, Fourier summations and structure factor calculations. IBM 360/75.
$L A L S$, Full-matrix leastsquares refinement of positional and thermal parameters and of scale factors. IBM 360/75.

Authors
R. Norrestam, Stockholm. Sweden.
P.-E. Werner and M. Leijonmarck, Stockholm, Sweden.
A. Zalkin, Berkeley,USA. Modified by R. Liminga and J.-O. Lundgren, Uppsala, Sweden. Further modified by O. Lindgren, Göteborg and A. G. Nord and B. G. Brandt, Stockholm, Sweden.
P. K. Gantzel, R. A. Sparks and K. N. Trueblood, Los Angeles, USA. Modified by A. Zalkin, Berkeley, USA and by

DISTAN, Calculation of interatomic distances and bond angles with estimated standard deviations, IBM 360/75.
ORTEP, Thermal-ellipsoid plot. For crystal structure illustrations IBM 360/75.
J.-O. Lundgren, R. Liminga and C.-I. Brändén, Uppsala, Sweden. Further modified by O. Lindgren, Göteborg and by B. G. Brandt and A. G. Nord, Stockholm, Sweden.
A. Zalkin, Berkeley, USA. Modified by A. G. Nord and B. G. Brandt, Stockholm, Sweden.
C. K. Johnson, Oak Ridge, USA. Modified by I. Carlbom, Stockholm, Sweden.

The present investigation received financial support from the Tri-Centennial Fund of the Bank of Sweden and from the Swedish Natural Science Research Council.

The author is indebted to Professor Peder Kierkegaard for his active and stimulating interest in this work. Thanks are also due to Professor Arne Magnéli for all facilities placed at her disposal and to Dr Sven Westman for his correction of the English of this paper.

References

Clark, I. R. (1962). Rev. Pure Appl. Chem. 12, 58.
Cromer, D. T. (1965). Acta Cryst. 18, 17.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.
Freeman, A. J. (1959). Acta Cryst. 12, 261.
Gantzel, P. K., Sparks, R. A. \& Trueblood, K. N. (1966). IUCr World List of Crystallographic Computer Programs. 2nd ed. Program 384.
Hamilton, W. C. (1965). Acta Cryst. 18, 502.
Hamilton, J. A., Hamor, T. A., Robertson, J. M. \& Sim, G. A. (1962). J. Chem. Soc. p. 5061.

Hughes, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Leander, K. (1969). To be published.
Lide, D. R. (1962). Tetrahedron, 17, 125.

